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Model Reduction Near Periodic Orbits
of Hybrid Dynamical Systems

Samuel A. Burden, Member, IEEE, Shai Revzen, Member, IEEE, and S. Shankar Sastry, Fellow, IEEE

Abstract—We show that, near periodic orbits, a class of hybrid
models can be reduced to or approximated by smooth continuous-
time dynamical systems. Specifically, near an exponentially
stable periodic orbit undergoing isolated transitions in a hy-
brid dynamical system, nearby executions generically contract
superexponentially to a constant-dimensional subsystem. Under a
non-degeneracy condition on the rank deficiency of the associated
Poincaré map, the contraction occurs in finite time regardless of
the stability properties of the orbit. Hybrid transitions may be
removed from the resulting subsystem via a topological quotient
that admits a smooth structure to yield an equivalent smooth dy-
namical system. We demonstrate reduction of a high-dimensional
underactuated mechanical model for terrestrial locomotion, assess
structural stability of deadbeat controllers for rhythmic locomo-
tion and manipulation, and derive a normal form for the stability
basin of a hybrid oscillator. These applications illustrate the utility
of our theoretical results for synthesis and analysis of feedback
control laws for rhythmic hybrid behavior.

Index Terms—Poincaré map, hybrid systems, model reduction,
smoothing, legged locomotion.

I. INTRODUCTION

RHYTHMIC phenomena are pervasive, appearing in phys-
ical situations as diverse as legged locomotion [1], dexter-

ous manipulation [2], gene regulation [3], and electrical power
generation [4]. The most natural dynamical models for these
systems are piecewise-defined or discontinuous owing to inter-
mittent changes in the mechanical contact state of a locomotor
or manipulator, or to rapid switches in protein synthesis or
constraint activation in a gene or power network. Such hybrid
systems generally exhibit dynamical behaviors that are distinct
from those of smooth systems [5]. Restricting our attention to
the dynamics near periodic orbits in hybrid dynamical systems,
we demonstrate that a class of hybrid models for rhythmic
phenomena reduce to classical (smooth) dynamical systems.

Although the results of this paper do not depend on the
phenomenology of the physical system under investigation, a
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principal application domain for this work is terrestrial loco-
motion. Numerous architectures have been proposed to explain
how animals control their limbs; for steady-state locomotion,
most posit a principle of coordination, synergy, symmetry or
synchronization, and there is a surfeit of neurophysiological
data to support these hypotheses [6]–[10]. Taken together, the
empirical evidence suggests that the large number of degrees-
of-freedom (DOF) available to a locomotor can collapse dur-
ing regular motion to a low-dimensional dynamical attractor
(a template) embedded within a higher-dimensional model (an
anchor) that respects the locomotor’s physiology [1], [11]. We
provide a mathematical framework to model this empirically
observed dimensionality reduction in the deterministic setting.

A stable hybrid periodic orbit provides a natural abstrac-
tion for the dynamics of steady-state legged locomotion. This
widely-adopted approach has generated models of bipedal
[12]–[15] and multi-legged [16]–[18] locomotion as well as
control-theoretic techniques for composition [19], coordination
[20], and stabilization [21]–[23]. In certain cases, it has been
possible to embed a low-dimensional abstraction in a higher-
dimensional model [24], [25]. Applying these techniques to
establish existence of a reduced-order subsystem imposes strin-
gent assumptions on the dynamics of locomotion that are
difficult to verify for any particular locomotor. In contrast,
the results of this paper imply that hybrid dynamical systems
generically exhibit dimension reduction near periodic orbits
solely due to the interaction of the discrete-time switching
dynamics with the continuous-time flow.

Under the hypothesis that iterates of the Poincaré map asso-
ciated with a periodic orbit in a hybrid dynamical system are
eventually constant rank, we construct a constant-dimensional
invariant subsystem that attracts all nearby trajectories in finite
time regardless of the stability properties of the orbit; this
appears as Theorem 1 of Section III-C, below. Assuming in-
stead that the periodic orbit under investigation is exponentially
stable, we show in Theorem 2 of Section III-D that trajectories
generically contract superexponentially to a subsystem whose
dimension is determined by rank properties of the linearized
Poincaré map at a single point. The resulting subsystems pos-
sess a special structure that we exploit in Theorem 3 to construct
a topological quotient that removes the hybrid transitions and
admits the structure of a smooth manifold, yielding an equiva-
lent smooth dynamical system.

In Section IV we apply these results to reduce the complexity
of hybrid models for mechanical systems and analyze rhythmic
hybrid control systems. The example in Section IV-A demon-
strates that reduction can occur spontaneously in mechanical
systems undergoing plastic impacts. In Section IV-B we prove
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that a family of (3 + 2n)-DOF multi-leg models provably re-
duce to a common 3-DOF mechanical system independent of
the number of limbs, n ∈ N; this demonstrates model reduction
in the mechanical component of the class of neuromechanical
models considered in [1], [18]. As further applications, we
assess structural stability of deadbeat controllers for rhythmic
locomotion and manipulation in Section IV-C and derive a
normal form for the stability basin of a hybrid oscillator in
Section IV-D.

II. PRELIMINARIES

We assume familiarity with differential topology and geom-
etry [26], [27], and summarize notation and terminology in this
section for completeness.

If (X, ‖ · ‖) is a Banach space, we let Bδ(x) ⊂ X denote the
open ball of radius δ > 0 centered at x ∈ X; for X = R

n, we
may emphasize the dimension n by writing Bn

δ (0) ⊂ R
n for the

open δ-ball. A subset of a topological space is precompact if it is
open and its closure is compact. A neighborhood of a point x ∈
X in a topological space X is a connected open subset U ⊂ X
containing x. The disjoint union of a collection of sets {Sj}j∈J
is denoted

∐
j∈J Sj =

⋃
j∈J Sj × {j}, a set we endow with

the natural piecewise-defined topology. If ∼⊂ D ×D is an
equivalence relation on the topological space D, then we let
D/ ∼ denote the corresponding set of equivalence classes.
There is a natural quotient projection π : D → D/ ∼ sending
x ∈ D to its equivalence class [x] ∈ D/ ∼, and we endow
D/ ∼ with the (unique) finest topology making π continuous
[27, Appendix A]. Any map R : G → D defined over a subset
G ⊂ D determines an equivalence relation ∼= {(x, y) ∈ D ×
D : x ∈ R−1(y), y ∈ R−1(x), or x = y}. To be explicit that the
equivalence relation is determined by R we denote the quotient
space as

D/ ∼ =
D

G
R∼ R(G)

.

A Cr n-dimensional manifold M with boundary ∂M is an
n-dimensional topological manifold covered by an atlas
of Cr coordinate charts {(Uα, ϕα)}α∈A where Uα ⊂ M
is open, ϕα : Uα → Hn is a homeomorphism, and
Hn = {(y1, . . . , yn) ∈ R

n : yn ≥ 0} is the upper half-
space; we write dimM = n. The charts are Cr in the sense
that ϕα ◦ ϕ−1

β is a Cr diffeomorphism over ϕβ(Uα ∩ Uβ) for
all pairs α, β ∈ A for which Uα ∩ Uβ 
= ∅; if r = ∞ we say M
is smooth. The boundary ∂M ⊂ M contains those points that
are mapped to the plane {(y1, . . . , yn) ∈ R

n : yn = 0} in some
chart. A map P : M → N is Cr if M and N are Cr manifolds
and for every x ∈ M there is a pair of charts (U,ϕ), (V, ψ)
with x ∈ U ⊂ M and P (x) ∈ V ⊂ N such that the coordinate
representation P̃ = ψ ◦ P ◦ ϕ−1 is a Cr map between subsets
of Hn. We let Cr(M,N) denote the normed vector space of
Cr maps between M and N endowed with the uniform Cr

norm [26, Ch. 2].
Each x ∈ M has an associated tangent space TxM , and

the disjoint union of the tangent spaces is the tangent bundle
TM =

∐
x∈M TxM . Note that any element in TM may be

regarded as a pair (x, δ) where x ∈ M and δ ∈ TxM , and TM
is naturally a smooth 2n-dimensional manifold. We let T(M)
denote the set of smooth vector fields on M , i.e., smooth maps
F : M → TM for which F (x) = (x, δ) for some δ ∈ TxM
and all x ∈ M . It is a fundamental result that any F ∈ T(M)
determines an ordinary differential equation in every chart on
the manifold that may be solved globally to obtain a maximal
flow φ : F → M where F ⊂ R×M is the maximal flow do-
main [27, Theorem 17.8].

If P : M → N is a smooth map between smooth manifolds,
then at each x ∈ M there is an associated linear map DP (x) :
TxM → TP (x)N called the pushforward. Globally, the push-
forward is a smooth map DP : TM → TN ; in coordinates, it
is the familiar Jacobian matrix. If M = X × Y is a product
manifold, the pushforward naturally decomposes as DP =
(DxP,DyP ) corresponding to derivatives taken with respect to
X and Y , respectively. The rank of a smooth map P : M → N
at a point x ∈ M is rank DP (x). If rank DP (x) = r for all
x ∈ M , we simply write rank DP ≡ r. If P is furthermore a
homeomorphism onto its image, then P is a smooth embedding,
and the image P (M) is a smooth embedded submanifold.
In this case the difference dimN − dimP (M) is called the
codimension of P (M), and any smooth vector field F ∈ T(M)
may be pushed forward to a unique smooth vector field
DP (F ) ∈ T(P (M)). A vector field F ∈ T(M) is inward-
pointing at x ∈ ∂M if for any coordinate chart (U,ϕ) with
x ∈ U the n–th coordinate of Dϕ(F ) is positive and outward-
pointing if it is negative.

III. HYBRID DYNAMICAL SYSTEMS

We describe a class of hybrid systems useful for modeling
physical phenomena in Section III-A, then restrict our atten-
tion to the behavior of such systems near periodic orbits in
Section III-B. It was shown in [28] that the Poincaré map
associated with a periodic orbit of a hybrid system is generally
not full rank; we explore the geometric consequences of this
rank loss. Under a non-degeneracy condition on this rank
loss we demonstrate in Section III-C that the hybrid system
possesses an invariant hybrid subsystem to which all nearby
trajectories contract in finite time regardless of the stability
properties of the orbit. In Section III-D we show that the
invariance and contraction of the subsystem hold approximately
for any exponentially stable hybrid periodic orbit. Using tools
from differential topology, we remove hybrid transitions from
the resulting reduced-order subsystems in Section III-E to yield
a continuous-time dynamical system that governs the behavior
of the hybrid system near its periodic orbit.

A. Hybrid Differential Geometry

For our purposes, it is expedient to define hybrid dynamical
systems over a finite disjoint union M =

∐
j∈J Mj where Mj

is a connected manifold with boundary for each j ∈ J ; we
endow M with the natural (piecewise-defined) topology and
smooth structure. We refer to such spaces as smooth hybrid
manifolds. Note that the dimensions of the constituent mani-
folds are not required to be equal. Several differential-geometric
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constructions naturally generalize to such spaces; we prepend
the modifier ‘hybrid’ to make it clear when this generalization
is invoked. For instance, the hybrid tangent bundle TM is the
disjoint union of the tangent bundles TMj , and the hybrid
boundary ∂M is the disjoint union of the boundaries ∂Mj .

Let M =
∐

j∈J Mj and N =
∐

�∈L N� be two hybrid man-
ifolds. Note that if a map R : M → N is continuous, then for
each j ∈ J there exists 
 ∈ L such that R(Mj) ⊂ N� and hence
R|Mj

: Mj → N�. Using this observation, there is a natural def-
inition of differentiability for continuous maps between hybrid
manifolds. Namely, a map R : M → N is called smooth if R is
continuous and R|Mj

: Mj → N is smooth for each j ∈ J . In
this case the pushforward DR : TM → TN is the smooth map
defined piecewise as DR|TMj

= D(R|Mj
) for each j ∈ J . A

smooth map F : M → TM is called a vector field if for all
x ∈ M there exists v ∈ TxM such that F (x) = (x, v).

With these preliminaries established, we define the class of
hybrid systems considered in this paper. This is a specializa-
tion of hybrid automata [5] that emphasizes the differential-
geometric character of hybrid phenomena.

Definition 1: A hybrid dynamical system is specified by a
tuple H = (D,F,G,R) where:
D =

∐
j∈J Dj is a smooth hybrid manifold;

F : D → TD is a smooth vector field;
G ⊂ ∂D is an open subset of ∂D;
R : G → D is a smooth map.

As in [5], we call R the reset map and G the guard. When we
wish to be explicit about the order of smoothness, we will say
H is Cr if D, F , and R are Cr as a manifold, vector field, and
map, respectively, for some r ∈ N.

Roughly speaking, an execution of a hybrid dynamical sys-
tem is determined from an initial condition in D by following
the continuous-time dynamics determined by the vector field F
until the trajectory reaches the guard G, at which point the reset
map R is applied to obtain a new initial condition.

Definition 2: An execution of a hybrid dynamical system
H = (D,F,G,R) is a right-continuous function x : T → D
over an interval T ⊂ R such that:

1) if x is continuous at t ∈ T , then x is differentiable at t
and (d/dt)x(t) = F (x(t));

2) if x is discontinuous at t ∈ T , then the limit x(t−) =
lims→t− x(s) exists, x(t−) ∈ G, and R(x(t−)) = x(t).

If F is tangent to G at x ∈ G, there is a possible ambiguity in
determining a trajectory from x since one may either follow the
flow of F on D or apply the reset map to obtain a new initial
condition y = R(x).

Assumption 1: F is outward–pointing on G.
Remark 1: The use of time-invariant vector fields and reset

maps in Definition 1 is without loss of generality in the follow-
ing sense. Suppose D is a hybrid manifold, G ⊂ ∂D is open,
and F : R×D → TD, R : R×G → D define a time-varying
vector field and reset map, respectively. Define

D̂ = R×D, Ĝ = R×G

and let F̂ : D̂ → TD̂, R̂ : Ĝ → D̂ be defined in the obvious

way. Then Ĥ = (D̂, F̂ , Ĝ, R̂) is a hybrid dynamical system in
the form of Definition 1.

B. Hybrid Periodic Orbits and Hybrid Poincaré Maps

In this paper, we are principally concerned with periodic exe-
cutions of hybrid dynamical systems, which are nonequilibrium
trajectories that intersect themselves.

Definition 3: An execution γ : T → D is periodic if there
exists s ∈ T , τ > 0 such that s+ τ ∈ T and

γ(s) = γ(s+ τ). (1)

If there is no smaller positive number τ such that (1) holds, then
τ is called the period of γ, and we will say γ is a τ -periodic
orbit.

Remark 2: The domain T of a periodic orbit may be taken
to be the entire real line, T = R, without loss of generality. In
the sequel we conflate the execution γ : R → D with its image
γ(R) ⊂ D.

Motivated by the applications in Section IV, we restrict
our attention to periodic orbits undergoing isolated discrete
transitions, i.e., a finite number of discrete transitions that occur
at distinct time instants.

Assumption 2: γ undergoes isolated discrete transitions.
In addition to excluding Zeno periodic orbits [29] from our

analysis, this assumption enables us to construct Poincaré maps
(see [30], [31] for the classical case) associated with γ. A
Poincaré map P : U → Σ is defined over an open subset U ⊂
Σ of an embedded codimension-1 submanifold Σ ⊂ D that
intersects the periodic orbit at one point {ξ} = γ ∩ Σ by tracing
an execution from x ∈ U forward in time until it intersects Σ at
P (x). The submanifold Σ is referred to as a Poincaré section.
It is known that this procedure yields a map that is well–defined
and smooth near the fixed point ξ = P (ξ) [13], [28], [32], [33].
Unlike the classical case, Poincaré maps in hybrid systems need
not be full rank.

A straightforward application of Sylvester’s inequality [34,
Appendix A.5.3] shows that the rank of the Poincaré map
is bounded above by the minimum dimension of all hybrid
domains. More precise bounds are pursued elsewhere [28], but
the following Proposition will suffice for the Applications in
Section IV.

Proposition 1: If P : U → Σ is a Poincaré map associ-
ated with a periodic orbit γ, then ∀x ∈ U : rank DP (x) ≤
minj∈J dimDj − 1.

It is a standard result for continuous-time dynamical systems
that the eigenvalues of the linearization of the Poincaré map at
its fixed point—commonly called Floquet multipliers—do not
depend on the choice of Poincaré section [31, Section 1.5]. This
generalizes to the hybrid setting in the sense that there exist
similarity transformations relating the non-nilpotent portion of
the Jordan forms for linearizations of Poincaré maps defined
over different sections. Note that, since Proposition 1 implies
that zero eigenvalues will generally have different algebraic
multiplicity for linearized Poincaré maps obtained from sec-
tions located in hybrid domains with different dimensions, we
do not expect the nilpotent Jordan blocks for these linear maps
to bear any relation to one another. These observations are
summarized in the following Lemma.

Lemma 1: If P : U → Σ, P̂ : Û → Σ̂ are Poincaré maps
associated with a periodic orbit γ with fixed points P (ξ) = ξ,
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Fig. 1. Illustration of constructions used in proofs of Lemma 1, Theorem 1,
and Theorem 2. For each j ∈ J , the periodic orbit γ intersects the guard in
domain Dj at {ξj} = γ ∩G ∩ ∂Dj . A neighborhood Uj ⊂ Dj of R(ξj−1)
flows via the vector field F |Dj

to reach a neighborhood Gj ⊂ G ∩ ∂Dj of ξj
obtained via Gj = R−1(Uj+1). The neighborhood Σj ⊂ Gj of ξj is chosen
sufficiently small to ensure executions initialized in Σj return to Gj via the
Poincaré map Pj : Σj → Gj after one cycle.

P̂ (ξ̂) = ξ̂, then spec DP (ξ) \ {0}=spec DP̂ (ξ̂)\{0}. More-
over, with

J =

(
A 0
0 N

)
, Ĵ =

(
Â 0
0 N̂

)

denoting the Jordan canonical forms of DP (ξ) and DP̂ (ξ̂),
where 0 
∈ spec A ∪ spec Â and N , N̂ are nilpotent, we con-
clude that A is similar to Â.

Proof: The periodic orbit undergoes a finite number of
transitions k ∈ N, so we may index the corresponding sequence
of domains as1 D1, . . . , Dk. Without loss of generality, assume
the Dj’s are distinct2 and let {ξj} = γ ∩G ∩ ∂Dj be the exit
point of γ in Dj . We wish to construct the Poincaré map Pj

associated with the periodic orbit over a neighborhood of ξj in
G. For j ∈ {1, . . . , k} let:
φj : Fj → Dj be the maximal flow of F |Dj

on Dj ;
Uj ⊂ Dj be a neighborhood of R(ξj−1) over which Lemma 2

from Appendix I-A1 may be applied between R(ξj−1) ∈
Dj and G ∩ ∂Dj to obtain a time-to-impact map σj :
Uj → R;

Gj ⊂ G ∩ ∂Dj be defined as Gj = R−1(Uj+1);
ρj : Gj → Gj+1 be defined by ρj(x) = φj+1(σj+1 ◦R(x),

R(x)).
The Poincaré map defined over Gj is obtained formally by
iterating the ρ’s around the cycle

Pj = ρj−1 ◦ · · · ◦ ρ1 ◦ ρk ◦ · · · ◦ ρj . (2)

The neighborhood Σj ⊂ Gj of ξj over which this map is well-
defined is determined by pulling Gj backward around the cycle

Σj =
(
ρ−1
j ◦ · · · ◦ ρ−1

k ◦ ρ−1
1 ◦ · · · ◦ ρ−1

j−1

)
(Gj)

and similarly for any iterate of Pj . Note that Pj(ξj) = ξj is a
fixed point of Pj by construction. Without loss of generality
we assume3 Σ, Σ̂ ⊂ G so that P = Pj and P̂ = Pi for some
i, j ∈ {1, . . . , k}. Refer to Fig. 1 for an illustration.

1We regard subscripts modulo k so that Dk ≡ D0.
2Otherwise we can find {Bj}kj=1 such that Bj ⊂ Dj is open,

⋃k

j=1
Bj

contains γ, and Bi ∩Bj = ∅ if i �= j, then proceed on D̂ =
∐k

j=1
Bj .

3Otherwise we may introduce fictitious guards Σ and/or Σ̂ near γ and repeat
the construction.

We proceed by showing that, given a chain of generalized
eigenvectors associated with a non-zero eigenvalue of DPj(ξj)
for some j ∈ {1, . . . , k}, we can construct a chain of gen-
eralized eigenvectors associated with DPi(ξi) with the same
eigenvalue for each i ∈ {1, . . . , k}. Fix j ∈ {1, . . . , k} and
λ ∈ spec DPj(ξj) with λ 
= 0. Suppose {x�

j}
m

�=1
is a chain of

generalized eigenvectors associated with λ, i.e., DPj(ξj)x
m
j =

λxm
j and for all 
 ∈ {1, . . . ,m− 1}

x�
j = (DPj(ξj)− λI)x�+1

j . (3)

For all 
 ∈ {1, . . . ,m}, define x�
j+1 = Dρj(ξj)x

�
j and note

Dρj(ξj)DPj(ξj) = DPj+1(ξj+1)Dρj(ξj) by (2). Combining
this observation with (3) yields

DPj+1(ξj+1)x
m
j+1 =DPj+1(ξj+1)Dρj(ξj)x

m
j

=Dρj(ξj)DPj(ξj)x
m
j

=λDρj(ξj)x
m
j = λxm

j+1

so that λ ∈ spec DPj+1(ξj+1) and for all 
 ∈ {1, . . . ,m− 1}
x�
j+1 =Dρj(ξj)x

�
j

=Dρj(ξj) (DPj(ξj)− λI)x�+1
j

= (DPj+1(ξj+1)Dρj(ξj)− λDρj(ξj))x
�+1
j

= (DPj+1(ξj+1)− λI)x�+1
j+1.

Note that {x�
j+1}

m

�=1
must be linearly independent since they

map to the linearly independent collection {λx�
j}

m

�=1
through

the composition of linear maps Dρj−1(ξj−1) · · ·Dρj+1(ξj+1).
Therefore we conclude {x�

j+1}
m

�=1
is a chain of generalized

eigenvectors for DPj+1(ξj+1) associated with λ. Proceeding
inductively, for any i ∈ {1, . . . , k} we obtain a corresponding
chain for DPi(ξi). Since the subspace associated with a maxi-
mal chain of generalized eigenvectors for a linear map is invari-
ant under the linear map, it follows that the non-nilpotent Jordan
blocks of DPj(ξj) must be in one-to-one correspondence with
those of DPi(ξi) for any i ∈ {1, . . . , k}. �

C. Exact Reduction

When iterates of the Poincaré map associated with a periodic
orbit of a hybrid dynamical system have constant rank, execu-
tions initialized nearby converge in finite time to a constant-
dimensional subsystem.

Theorem 1 (Exact Reduction): Let γ be a periodic orbit that
undergoes isolated transitions in a hybrid dynamical system
H = (D,F,G,R), P : U → Σ a Poincaré map for γ, m =
minj dimDj , and suppose there exists a neighborhood V ⊂ U
of {ξ} = γ ∩ U and r ∈ N such that rank DPm(x) = r for
all x ∈ V . Then there exists an (r + 1)-dimensional hybrid
embedded submanifold M ⊂ D and a hybrid open set W ⊂ D
for which γ ⊂ M ∩W and trajectories starting in W contract
to M in finite time.

Proof: We begin in step (i) by applying Lemma 4 from
Appendix I-B1 to construct an r-dimensional submanifold S
of the Poincaré section Σ that is invariant under the Poincaré
map P . Subsequently, in (ii) we flow S forward in time for



2630 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 10, OCTOBER 2015

one cycle, i.e., until it returns to Σ, to obtain for each j ∈ J
an (r + 1)–dimensional submanifold Mj ⊂ Dj that contains
γ ∩Dj and is invariant under F . Finally, in (iii) for each j ∈ J
we construct an open set Wj ⊂ Dj containing γ ∩Dj so that
the collection M =

∐
j∈J Mj attracts all trajectories initialized

in the hybrid open set W =
∐

j∈J Wj in finite time.

(i) Applying Lemma 4 from Appendix I-B1 to P , there
is a neighborhood V ⊂ U of {ξ} = γ ∩ U such that
S = Pm(V ) is an r-dimensional embedded submanifold
of U ⊂ Σ, P |S maps S diffeomorphically onto P (S),
and P (S) ∩ S is an open subset of S. Without loss of
generality we assume U ⊂ G ∩ ∂D1 and the periodic
orbit γ passes through each domain once per cycle.
For notational convenience, for each j ∈ J we will let
j + 1 ∈ J denote the subsequent domain visited by γ
(i.e., we identify J with an additive monoid of integers
modulo |J |). Set {ξ1} = γ ∩G ∩ ∂D1, let U2 ⊂ D2 be
a neighborhood of R(ξ1) over which Lemma 2 from
Appendix I-A1 may be applied to construct a time-
to-impact map σ2 : U2 → R, let G1 = R−1(U2) be a
neighborhood of ξ1 in G ∩ ∂D1, and let φ1 : F1 → D1

the maximal flow of F |D1
on D1. Proceed inductively

forward around the cycle to construct, for each j ∈ J :
the exit point {ξj} = γ ∩G ∩ ∂Dj ; time-to-impact map
σj : Uj → R over a neighborhood Uj ⊂ Dj containing
R(ξj−1); a neighborhood Gj = R−1(Uj+1) ⊂ G ∩ ∂Dj

containing ξj ; and the maximal flow φj : Fj → Dj of
F |Dj

on Dj . Refer to Fig. 1 for an illustration of this
construction.

(ii) By flowing S forward through one cycle, for each j ∈
J we will construct a submanifold Mj ⊂ Dj that is
diffeomorphic to [0, 1]× R

r. Observe that, since P |S is
a diffeomorphism, with S1 = S ∩G1 we have that the
restriction R|S1

is a diffeomorphism onto its image and
F |R(S1) is nowhere tangent to R(S1). Let M2 ⊂ D2 be
the embedded submanifold obtained by flowing R(S1)
to G ∩ ∂D2, and let S2 = M2 ∩G2; observe that S2 is
diffeomorphic to S1, M2 is diffeomorphic to [0, 1]× S2,
and F |D2

is tangent to M2. Proceed inductively forward
around the cycle to construct, for each j ∈ J , an em-
bedded submanifold Sj ⊂ Gj diffeomorphic to S1 and a
submanifold Mj ⊂ Dj diffeomorphic to [0, 1]× Sj such
that F |Dj

is tangent to Mj . Note that S1 is diffeomorphic
to the r-dimensional manifold R

r, so dimMj = r + 1
for each j ∈ J . The subsystem M =

∐
j∈J Mj ⊂ D

contains γ, is invariant under the continuous flow by
construction, and is invariant under the reset map in the
sense that R−1(M) ∩M ⊂ G ∩M is open.

(iii) Finally, let W1 = φ−1
j (R× V ) ⊂ D1 be the open set that

flows into V , where S = Pm(V ) was defined in step
(i). Let W|J | = φ−1

|J |(R
−1(W1)) ⊂ D|J | be the open set

that flows into W1 where |J | denotes the number of
elements in J . Proceed inductively backward around the
cycle to construct, for each j ∈ J , an open set Wj ⊂ Dj

that flows into S in finite time. Then the hybrid open
set W =

∐
j∈J Wj ⊂ D contains γ and all executions

initialized in W flow into S ⊂ M in finite time. �

Since M is invariant under the continuous dynamics (F |M is
tangent to M ) and the discrete dynamics (R(G ∩M) ⊂ M), it
determines a subsystem that governs the stability of γ in H .

Corollary 1: H|M = (M,F |M , G ∩M,R|G∩M ) is a hybrid
dynamical system with periodic orbit γ.

Corollary 2: The periodic orbit γ is Lyapunov (resp. asymp-
totically, exponentially) stable in H if and only if γ is Lyapunov
(resp. asymptotically, exponentially) stable in H|M .

When the rank at the fixed point ξ = P (ξ) achieves the upper
bound stipulated by Proposition 1, the following Corollary
ensures that DPm is constant rank (and hence Theorem 1 may
be applied). This is important since it is possible to compute a
lower bound for rank DPm(ξ) via numerical simulation [35].

Corollary 3: If rank DPm(ξ) = minj∈J dimDj − 1 =
m− 1, then there exists an open set V ⊂ U containing ξ such
that rank DPm(x) = m− 1 for all x ∈ V . Thus the hypothe-
ses of Theorem 1 are satisfied with r = m− 1.

If the Poincaré map attains the same constant rank r for two
subsequent iterates, it is not necessary to continue up to iterate
m=minj dimDj before checking the hypotheses of Theorem 1.

Corollary 4: If there exists a neighborhood W ⊂ U of ξ
and k, r ∈ N such that rank DP k(x) = r for all x ∈ W and
rank DP k+1(ξ) = rank DP k(ξ), then there exists a neigh-
borhood V ⊂ W of ξ such that rank DPm(x) = r for all
x ∈ V . Thus the hypotheses of Theorem 1 are satisfied with
r = rank DP k(ξ).

The choice of Poincaré section in Theorem 1 is irrele-
vant in the sense that the Poincaré map P̃ : Ũ → Σ̃ defined
over any other Poincaré section Σ̃ will be constant–rank in a
neighborhood Ṽ ⊂ Ũ of its fixed point {ξ̃} = γ ∩ Σ̃, as the
following Corollary shows; this follows directly from Lemma 4
in [33].

Corollary 5: Under the hypotheses of Theorem 1, if P̃ :

Ũ → Σ̃ is any other Poincaré map for γ with fixed point ξ̃ =

P̃ (ξ̃), then there exists an open subset Ṽ ⊂ Ũ containing ξ̃ such
that rank DP̃m(x) = r for all x ∈ Ṽ . Thus the hypotheses of
Theorem 1 are satisfied for P̃ with r = rank DP̃m(ξ).

D. Approximate Reduction

Restricting our attention to exponentially stable periodic
orbits, we find that a hybrid system generically contracts su-
perexponentially to a constant-dimensional subsystem near a
periodic orbit.

Theorem 2 (Approximate Reduction): Let γ be an expo-
nentially stable periodic orbit undergoing isolated transitions
in a hybrid dynamical system H = (D,F,G,R), P : U → Σ
a Poincaré map for γ with fixed point {ξ} = γ ∩ Σ, m =
minj dimDj , and r = rank DPm(ξ). Then there exists an
(r + 1)-dimensional hybrid embedded submanifold M ⊂ D
such that for any ε > 0 there exists a hybrid open set W ε ⊂
D for which γ ⊂ M ∩W ε and the distance from trajectories
starting in W ε to M contracts by ε each cycle.

Proof: We begin with an overview of the proof strategy.
First (i), for each j ∈ J we construct a Poincaré map Pj over
a Poincaré section Σj ⊂ G ∩ ∂Dj and apply Lemma 5 from
Appendix I-B2 to obtain a change-of-coordinates in which Pj

splits into two components: a linear map that only depends on
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the first r coordinates and a nonlinear map whose linearization
is nilpotent at the fixed point of Pj . Second (ii), for each
j ∈ J we construct an r-dimensional submanifold Sj ⊂ Σj

such that R|Sj
is a diffeomorphism near the fixed point of

Pj . We subsequently flow the image R(Sj) forward until it
impacts the guard to construct an (r + 1)-dimensional subman-
ifold Mj+1 ⊂ Dj+1 that contains γ ∩Dj+1 and is invariant
under F . Third (iii), for each j ∈ J we apply Lemma 6 from
Appendix I-B3 to construct a distance metric on an open set
Wj ⊂ Dj containing γ ∩Dj with respect to which executions
contract superexponentially toward Mj .

(i) Without loss of generality we assume U ⊂ G ∩ ∂D1 and
the periodic orbit γ passes through each domain once
per cycle. As in the proof of Theorem 1, for each j ∈
J we will let j + 1 ∈ J denote the subsequent domain
visited by γ (i.e., we identify J with an additive monoid
of integers modulo |J |). For each j ∈ J let Pj : Uj →
Σj be a Poincaré map for γ defined over Uj ⊂ Σj ⊂
G ∩ ∂Dj , and let {ξj} = γ ∩G ∩ ∂Dj be the exit point
of γ in Dj . Refer to Fig. 1 for an illustration of this
construction. Lemma 1 implies that rank DPm

j (ξj) = r
for all j ∈ J . Applying Lemma 5 from Appendix I-B2
implies that for each j ∈ J there exists an open set Vj ⊂
Uj containing ξj and a C1 diffeomorphism ϕj : Vj →
R

nj−1 where nj = dimDj such that ϕj(ξj) = 0 and
the coordinate representation P̃j = ϕj ◦ Pj ◦ ϕ−1

j of Pj

has the form P̃j(zj , ζj) = (Ajzj , Zj(zj , ζj)) where zj ∈
R

r, ζj ∈ R
nj−1−r, Aj ∈ R

r×r is invertible, Zj(0, 0) =
0, and DζjZj(0, 0) is nilpotent. For each j ∈ J , let Πj :
Vj → G be a smooth map defined as follows. Given
x ∈ Vj , write (zx, ζx) = ϕj(x) ∈ R

r × R
nj−r−1 and let

Πj(x) = ϕ−1
j (zx, 0).

(ii) Fix j ∈ J and let Nj = ϕ−1
j (Rr × {0}) ⊂ Vj , an

r-dimensional embedded submanifold tangent to the
non-nilpotent eigendirections of DPm

j (ξj). Observe that
DR|G∩Nj

(ξj) has rank r = dimNj , hence by the In-
verse Function Theorem [27, Theorem 7.10] there is a
neighborhood Sj ⊂ Nj containing ξj such that R|Sj

:
Sj → D is a diffeomorphism onto its image R(Sj) ⊂
Dj+1. Furthermore, since rank DPm

j (ξj) = r, the vec-
tor field is transverse to R(Sj) at ξj , i.e., F (R(ξj)) 
∈
TR(ξj)R(Sj), and we assume Sj was chosen small
enough so that F is transverse along all of R(Sj). Let
Mj+1 ⊂ Dj+1 be the embedded submanifold obtained
by flowing R(Sj) forward to G; note that Mj+1 is dif-
feomorphic to [0, 1]× R

r. Observe that M =
∐

j∈J Mj

is invariant under the continuous flow (i.e., F |M is
tangent to M ) and approximately invariant under the
reset map in the sense that DR|G∩M is tangent to
M on γ: for all j ∈ J and δ ∈ Tξj (G ∩M) we have
DR|G∩M (ξj)δ ∈ TR(ξj)M . Observe that R ◦Πj |G∩Mj

:
G ∩Mj → Mj+1 is a diffeomorphism onto its image.

(iii) Fix ε > 0 and apply the construction in the proof
of Lemma 6 from Appendix I-B3 to obtain a radius
δ > 0 and for each j ∈ J a norm ‖ · ‖εj : Rnj−1 → R

such that the nonlinearity P̃j(zj , ζj)− (Ajzj , 0) con-
tracts exponentially fast with rate ε on B

nj−1
δ (0) ⊂

R
nj−1 as measured by ‖ · ‖εj . For each j ∈ J define V ε

j =

ϕ−1
j (B

nj−1
δ (0)) ⊂ G ∩ ∂Dj , let φj : Fj → Dj denote

the maximal flow of F |Dj
on Dj , and let W ε

j = φ−1
j (R×

V ε
j ) ⊂ Dj be the (open) set of points that flow into V ε

j .
Since φj is the flow of a smooth vector field transverse
to V ε

j , any x ∈ W ε
j can be written uniquely as x =

φj(tx, vx) for some tx ≤ 0 and vx ∈ V ε
j . Using this

representation, we endow W ε
j with a distance metric

dεj : W
ε
j ×W ε

j → R by defining dεj(x, y) = |tx − ty|+
‖ϕj(vx)− ϕj(vy)‖εj . Observe that the exponential con-

traction of P̃j at rate ε in ‖ · ‖εj to ϕj(Mj ∩G) implies
exponential contraction of executions initialized in W ε

j

at rate ε to M in dεj .

Finally, let W ε =
∐

j∈J W ε
j and Mε = M ∩W ε. Define a

smooth hybrid map Πε : G ∩W ε → G piecewise for each j ∈
J by observing that G ∩W ε

j ⊂ Vj and letting Πε(x) = Πj(x)
for all x ∈ G ∩W ε

j . �
Corollary 6: LettingMε=M ∩W ε, the collectionH|Mε =

(Mε, F |Mε , G ∩Mε, R ◦Πε|G∩Mε) is a C1 hybrid dynamical
system with periodic orbit γ, where Πε : G ∩W ε → G is the
smooth hybrid map constructed in the proof of Theorem 2.

Although the submanifold M ⊂ D is invariant under the
continuous dynamics of H in the sense that F |M is tangent
to M , the reset map must be modified to ensure M is invari-
ant under the discrete dynamics. However, since DR|G∩Mε =
D(R ∩Πε)|G∩Mε , the map Π does not affect R to first order.

Remark 3: We emphasize that hypothesis on the
rank of the Poincaré map P : U → Σ in Theorem 2
(rank DPm(ξ) = r at the point {ξ} = γ ∩ Σ) is weaker
than the hypothesis in Theorem 1 (rank DPm(x) =
r for all x in an open set V ⊂ U ). In particular, approximating
the rank over an uncountably infinite set typically involves
estimates on higher–order derivatives of Pm.

If the rank is constant for two subsequent iterates of the
linearized Poincaré map, then the rank is constant for all
subsequent iterates, including iterate m = minj dimDj .

Corollary 7: If there exist k ∈ N such that rank DP k(ξ) =
rank DP k+1(ξ), then rank DPm(ξ) = rank DP k(ξ). Thus
the hypotheses of Theorem 2 are satisfied with r =
rank DP k(ξ).

E. Smoothing

The subsystems yielded by Theorems 1 and 2 on exact
and approximate reduction share important properties: the con-
stituent manifolds have the same dimension; the reset map
is a hybrid diffeomorphism between disjoint portions of the
boundary; and the vector field points inward along the range
of the reset map. Under these conditions, we can globally
smooth the hybrid transitions using techniques from differential
topology to obtain a single continuous-time dynamical system.
Executions of the hybrid (sub)system are preserved as integral
curves of the continuous-time system. This provides a smooth
n-dimensional generalization of the hybrifold construction in
[36], the phase space constructed in [37] to analyze mechanical
impact, as well as the change-of-coordinates constructed in
[38, Section 3.1.1] to simplify analysis of juggling.
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Fig. 2. (a) Applying Theorem 1 (Exact Reduction) to a hybrid dynamical system H = (D,F,G,R) containing a periodic orbit γ with associated Poincaré
map P : U → Σ yields an invariant subsystem M =

∐
j∈J

Mj ; nearby trajectories contract to M in finite time. (b) The subsystem may be extracted to

yield a hybrid dynamical system H|M . (c) The hybrid system H|M may subsequently be smoothed via Theorem 3 (Smoothing) to yield a continuous-time

dynamical system (M̃, F̃ ). Application of Theorem 3 to the subsystem from Theorem 2 (Approximate Reduction) is illustrated by replacing H|M with H|Mε .

(a) H = (D,F,G,R); (b) H|M = (M,F |M , G ∩M,R|G∩M ); (c) (M̃, F̃ ).

Theorem 3 (Smoothing): Let H = (M,F,G,R) be a hybrid
dynamical system with M =

∐
j∈J Mj . Suppose dimMj = n

for all j ∈ J , R(G) ⊂ ∂M , ∂M = G
∐

R(G), R is a hybrid
diffeomorphism onto its image, and F is inward-pointing along

R(G). Then the topological quotient M̃ = M/(G
R∼ R(G))

may be endowed with the structure of a smooth manifold such
that:

1) the quotient projection π : M → M̃ restricts to a smooth
embedding π|Mj

: Mj → M̃ for each j ∈ J ;

2) there is a smooth vector field F̃ ∈ T(M̃) such that any
execution x : T → M of H descends to an integral curve
of F̃ on M̃ via π : M → M̃

∀t ∈ T :
d

dt
π ◦ x(t) = F̃ (π ◦ x(t)) .

Proof: Let S ⊂ G ∩Mi be a connected component in
some domain i ∈ J , and let k ∈ J be the index for which
R(S) ⊂ Mk. The hypotheses of this Theorem together with
Assumption 1 ensure Lemma 3 from Appendix I-A2 may be
applied to attach Mi to Mk to yield a new smooth manifold
M̃ik. The hybrid system defined over the domain

∐
{M̃ik} ∪

{Mj : j ∈ J \ {i, k}} and guard G \ S satisfies the hypotheses
of this Theorem, hence we may inductively attach domains on
each connected component that remains in G \ S. This yields
a smooth manifold M̃ and vector field F̃ ∈ T(M̃) with the
required properties. �

Remark 4: As illustrated in Fig. 2, Theorem 3 is applicable
to the subsystems H|M , H|Mε that emerge as a consequence
of the Corollaries to Theorems 1 and 2, respectively. Thus a
class of hybrid models for periodic phenomena may be reduced
(exactly or approximately) to smooth dynamical systems.

IV. APPLICATIONS

The Theorems of Section III apply directly to autonomous
hybrid dynamical systems; in Section IV-A we demonstrate
that reduction to a smooth subsystem can occur spontaneously
in a mechanical system undergoing intermittent impacts. The
results are also applicable to systems with control inputs; in
Section IV-B we synthesize a state-feedback control law that

Fig. 3. Schematic of vertical hopper. Two masses m and μ, constrained to
move vertically above a ground plane in a gravitational field with magnitude
g, are connected by a linear spring with stiffness k and nominal length �. The
lower mass experiences viscous drag proportional to velocity with constant b
when it is in the air, and impacts plastically with the ground (i.e., it is not
permitted to penetrate the ground and its velocity is instantaneously set to
zero whenever a collision occurs). When the lower mass is in contact with the
ground, the spring stiffness is multiplied by a constant a > 1.

reduces a family of multi-leg models for lateral-plane lo-
comotion to a common low-dimensional subsystem, and in
Section IV-C we analyze the structural stability of event-
triggered deadbeat control laws for locomotion. Finally, the
reduction of hybrid dynamics to a smooth subsystem provides
a route through which tools from classical dynamical systems
theory can be generalized to the hybrid setting; in Section IV-D
we extend a normal form for limit cycles.

A. Spontaneous Reduction in a Vertical Hopper

In this section, we apply Theorem 1 (Exact Reduction) to
the vertical hopper example shown in Fig. 3. This system
evolves through an aerial mode and a ground mode. In the
aerial mode, the lower mass moves freely at or above the ground
height. Transition to the ground mode occurs when the lower
mass reaches the ground height with negative velocity, where
it undergoes a perfectly plastic impact (i.e., its velocity is
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instantaneously set to zero). In the ground mode, the lower
mass remains stationary. Transition to the aerial mode occurs
when the aerial mode force allows the mass to lift off. We
now formulate this model in the hybrid dynamical system
framework of Definition 1.

The aerial mode Da (see Fig. 3 for notation) consists of
(y, ẏ, x, ẋ) ∈ Da = TR× TR≥0, and the vector field F |Da

is
given by μÿ = k(
− (y − x))− μg, mẍ=−k(
−(y−x))−
bẋ−mg. The boundary ∂Da = {(y, ẏ, x, ẋ) ∈ Da : x = 0}
contains the states where the lower mass has just impacted
the ground, and a hybrid transition occurs on the subset
Ga = {(y, ẏ, 0, ẋ) ∈ ∂Da : ẋ < 0} of the boundary Da where
the lower mass has negative velocity. The state is reinitial-
ized in the ground mode via R|Ga

: Ga → Dg defined by
R|Ga

(y, ẏ, 0, ẋ) = (y, ẏ). In the ground mode Dg = {(y, ẏ) ∈
TR : −k(
− y) ≤ mg}, the boundary consists of the set of
configurations where the force in the aerial mode allows the
lower mass to lift off, ∂Dg = {(y, ẏ) ∈ Dg : −k(
− y) =
mg}, and the vector field F |Dg

is given by μÿ = ak(
− y)−
μg. A hybrid transition occurs when the forces balance and will
instantaneously increase to pull the mass off the ground, Gg =
{(y, ẏ) ∈ ∂Dg : ẏ(t) > 0}, and the state is reset via R|Gg

:
Gg → Da defined by R|Gg

(y, ẏ) = (y, ẏ, 0, 0). This defines a
hybrid dynamical system (D,F,G,R) where

D = Da

∐
Dg, F ∈ T(D), G = Ga

∐
Gg, R : G → D.

With parameters (m,μ, k, b, 
, a, g) = (1, 3, 10, 5, 2, 2, 2),
numerical simulations suggest the vertical hopper possesses a
stable periodic orbit γ = (y∗, ẏ∗, x∗, ẋ∗) to which nearby trajec-
tories (y, ẏ, x, ẋ) converge asymptotically. Choosing a Poincaré
section Σ in the ground domain Dg at mid-stance, Σ = {(y, ẏ) :
ẏ = 0} ⊂ Dg , we find numerically4 that the hopper possesses
a stable periodic orbit γ that intersects the Poincaré section
at γ ∩ Σ = {ξ} where ξ = (y, ẏ) ≈ (0.94, 0.00). Using finite
differences, we determine that the linearization DP of the as-
sociated scalar-valued Poincaré map P : Σ → Σ has eigenvalue
spec DP (ξ) ≈ 0.57 at the fixed point P (ξ) = ξ. The rank of
the Poincaré map P attains the upper bound of Proposition 1,
hence Corollary 3 implies the rank hypothesis of Theorem 1
(Exact Reduction) is satisfied. Thus the dynamics of the hopper
collapse to a one degree-of-freedom mechanical system after a
single hop. Geometrically, the portion of the reduced subsystem
in each domain is diffeomorphic to [0, 1]× R. Algebraically,
the constraint that activates when the lower mass impacts the
ground transfers to the aerial mode where no such physical con-
straint exists: the lower mass state (x, ẋ) is uniquely determined
by the upper mass state (y, ẏ) for all future times.

B. Reducing a (3 + 2n) DOF Polyped to a 3 DOF LLS

A primary motivation for the present work is analysis of
legged locomotion. Several approaches have been proposed for
embedding lower-dimensional dynamics in legged robot sys-
tems, notably hybrid zero dynamics [21] and active embedding
[25]. Complementing these engineering approaches and predat-

4For numerical simulations, we use a recently-developed algorithm [35] with
step size h = 1× 10−2 and relaxation parameter ε = 1× 10−10.

Fig. 4. Lateral-plane models for locomotion described in Section IV-B.
(a) Polyped withn=4 legs, leg k annotated; (b) Lateral Leg-Spring (LLS) [17].

ing them, the templates and anchors hypotheses (TAH) [11]
conjectures that animal locomotion behaviors arise through
reduction of the anchor dynamics governing the nervous system
and body [1] to lower-dimensional template dynamics that en-
code a specific behavior [16], [17]. One well-studied template is
the Lateral Leg Spring (LLS) [17] model for sprawled posture
running, which has been shown to match how cockroaches
run and begin to recover from perturbations [39]. Higher-
dimensional neuromechanical variants of the model have been
shown to reduce states associated with the nervous system
[1]. In this section, we focus on reduction in the mechanical
dynamics of limbs. Specifically, we synthesize a state-feedback
control law under which the underactuated lateral-plane
polyped illustrated in Fig. 4(a) exactly reduces to the Lateral
Leg-Spring (LLS) [17] model in Fig. 4(b). With n limbs, the
polyped possesses (3 + 2n) degrees-of-freedom (DOF); the
LLS has 3 DOF. This example serves a dual purpose: first,
it demonstrates how our theoretical results can be applied to
reduce an arbitrary number of DOF in a locomotion model;
second, it suggests a mechanism that legged robot controllers
could exploit to anchor a desired template.

Before we proceed with describing the reduction procedure
in detail, we give an overview of the approach and the connec-
tion with Theorem 1. We begin in Section IV-B-1 by describing
the dynamics of the LLS template and polyped anchor. Then
in Section IV-B2 we construct a smooth state feedback law
that ensures that trajectories of the polyped body exactly match
those of the LLS; we accomplish this by simply ensuring the
net wrench [40] comprised of generalized forces and torques
acting on the polyped body matches that of the LLS for all
time. Subsequently, in Section IV-B-3 we modify the feedback
law to further ensure the states associated with the polyped’s
limbs reduce after a single stride via Theorem 1. Finally, in
Section IV-B5 we discuss the effect of perturbations on the
closed-loop reduced-order system.

1) Dynamics of Lateral Leg-Spring (LLS) and n-Leg
Polyped: The LLS is an energy-conserving lateral-plane model
for locomotion comprised of a massless leg-spring with elastic
potential V affixed at hip position h to an inertial body with two
translational (x, y) and one rotational (θ) DOF. The system is
initialized at the start of a stride by orienting the leg at a fixed
angle β with respect to the body at rest length 
 and touching
the foot down such that the leg will instantaneously contract.
The step ends once the leg extends to its rest length by touching
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the foot down on the opposite side of the body; subsequent steps
are defined inductively. In certain parameter regimes, the model
possesses a periodic running gait [17].

The underactuated hybrid control system illustrated in
Fig. 4(a) extends neuromechanical models previously proposed
to study multi—legged locomotion [1], [18] by introducing
masses into n ≥ 4 feet connected by massless limbs affixed
at hip locations {hk}nk=1 on the inertial body. We assume that
each foot can attach or detach from the substrate at any time,
and the transition from swing to stance entails a plastic impact
that annihilates the kinetic energy in a foot. We assume that
each limb k is fully-actuated; for simplicity we assume the
inputs act along the Cartesian coordinates and do not saturate
so that any (μk, νk) ∈ R

2 is feasible at any limb configuration.
We let q0 = (x, y, θ) ∈ Q0 = R

2 × S1 denote the position and
orientation of the body, and for each k ∈ {1, . . . , n} we let qk =
(xk, yk) ∈ Qk ∈ R

2 denote the position of the k-th foot. The
configuration space of the polyped is the (n+ 1)-fold product∏n

k=0 Qk. The n-leg polyped’s dynamics thus have the form

Mq̈0 =

n∑
k=1

(−μk,−νk, 0)Adgk , mk q̈k = (μk, νk) (4)

where M = diag(m,m, J) ∈ R
3×3 is the mass distribution of

the body and Adgk ∈ R
3×3 transforms a wrench applied at the

k-th hip to an equivalent wrench applied at the body center-of-
mass [40, Section 5.1].

2) Embedding LLS in Polyped: For any subset K ⊂ {1, . . . ,
n} of limbs, let∑

k∈K
(−μk,−νk, 0)Adgk ∈ T ∗Q0 (5)

denote the net wrench [40] on the body resulting from actuating
legs in K. Then so long as no two hips are coincident and
|K| ≥ 2, any desired wrench may be imposed on the body by
appropriate choice of inputs to the limbs in K regardless of
whether K contains limbs in stance or swing. In the next section
we describe a limb coordination procedure that ensures there
will be a subset of stance limbs that can impose the LLS’s
wrench and cancel the reaction wrench from actuating other
limbs at any time.

3) Reducing Polyped to LLS: We construct a smooth state
feedback control law yielding a closed-loop Poincaré map
PA : UA → ΣA for the polyped that splits as PA : UT × UN →
ΣT × ΣN such that

PA(z, ζ) = (PT (z), PN (z)) (6)

where PT : UT → ΣT is a Poincaré map for the LLS and
PN : UT → ΣN is a smooth map. In the form (6) it is clear that
since PT is a diffeomorphism near the fixed point ξ = PT (ξ),
all iterates of PA have constant rank equal to rank DPT (ξ) =
dimΣT near ξ, and therefore Theorem 1 applies.

Partition the n ≥ 4 limbs into swing
∐

stance, ensuring
|swing|, |stance| ≥ 2. Initialize at the beginning of a step at
time t with LLS and polyped body state (q0(t), q̇0(t)) and
polyped limb states {(qk(t), q̇k(t))}nk=1 by attaching stance
limbs and detaching swing limbs from the ground. Note that
the termination time τ for the LLS step depends smoothly on

the initial condition (q0(t), q̇0(t)). For each k ∈ swing choosing
constant inputs

(μk, νk) =
2

τ2
((x(τ), y(τ)) + r (θ(τ)) q̄k − qk(t)− τ q̇k(t))

(7)

ensures that the limb will reach a fixed location q̄k in the body
frame of reference at time τ . For each k ∈ stance choose inputs
(μk, νk) to cancel the reaction wrench from the swing limbs
and impose the LLS acceleration on the polyped body. At time
t+ τ , exchange the stance and swing limb sets and proceed as
with the previous step from the new initial condition. After two
steps, it is clear that the positions and velocities of the polyped’s
n limbs are uniquely determined by the body initial condition
(q0(t), q̇0(t)). Therefore the polyped’s Poincaré map has the
form of (6), so Theorem 1 implies the polyped anchor reduces
exactly to the LLS template after a single stride.

4) Qualitative Description of Reduction: The active em-
bedding described in Section IV-B2 ensures the polyped
body motion is always identical to that of the LLS, regard-
less of the state of the limbs. The limb posture control in
Section IV-B3 guarantees the limb states are determined by the
LLS body state after two steps, and furthermore synchronizes
touchdown and liftoff events with those of the LLS.

5) Effect of Perturbations and Parameter Variations: The
qualitative description in the preceding section makes it clear
that, following a sufficiently small perturbation or parameter
variation, the closed-loop polyped will continue to track and
ultimately reduce to an LLS that experiences the corresponding
disturbance. Note that this conclusion requires that the polyped
maintains the same control architecture exploited above to
obtain the product decomposition in (6). In particular, the
controller must maintain observability of the full state and
controllability of the limbs. We study the effect of more general
perturbations in the next section.

C. Deadbeat Control of Rhythmic Hybrid Systems

Generalizing the example from the previous section, we
now consider a system wherein a finitely-parameterized control
input updates when an execution passes through a distinguished
subset of state space. This form of control in rhythmic hybrid
systems dates back (at least) to Raibert’s hoppers [41] and
Koditschek’s jugglers [2], and has recently received renewed
interest [14], [22], [24], [25], [42]–[44]. We model this with a
hybrid system H = (D,F,G,R) whose vector field and reset
map depend on a control input that takes values in a smooth
boundaryless manifold Θ. The value of the control input may
be updated whenever an execution passes through the guard
G, but it does not change in response to the continuous flow.
Suppose for some θ ∈ Θ that H possesses a periodic orbit γ,
let P : U ×Θ → Σ be a Poincaré map associated with γ where
U ⊂ Σ ⊂ G, and let {ξ} = γ ∩ Σ. In this section we study
deadbeat control of the discrete-time nonlinear control system

xi+1 = P (xi, θi) (8)

and the discrete-time linear control system obtained by lin-
earizing P about the fixed point ξ = P (ξ, θ)

δxi+1 = DxP (ξ, θ)δxi +DθP (ξ, θ)δθi. (9)
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The control architecture we present is well—known for linear
and nonlinear maps arising in locomotion [22]; the novelty of
this section lies in the connection to exact and approximate
reduction via Theorems 1 and 2.

1) Exact Reduction Over One Cycle: As studied in [22], an
application of the Implicit Function Theorem [27, Theorem 7.8]
shows that if rank DθP (ξ, θ) = dimΣ then there exists a
neighborhood V ⊂ U of ξ and a smooth feedback law ψ : V →
Θ such that for all x ∈ V we have P (x, ψ(x)) = ξ, i.e., ψ is a
deadbeat control law for (8). Since ψ is smooth, the closed-loop
Poincaré map Pψ : V → Σ defined by Pψ(x) = P (x, ψ(x))
satisfies the hypotheses of Theorem 1 (Exact Reduction) with
rank r = 0, so the invariant subsystem yielded by the Theorem
is simply the periodic orbit γ.

In practice it may be desirable to reduce fewer than dimΣ
coordinates. If there exists a smooth function h : Σ → R

d that
satisfies h ◦ P (ξ, θ) = 0 and rankDθh ◦ P (ξ, θ) = d, then the
preceding construction yields a closed-loop system that reduces
via Theorem 1 to the embedded d-dimensional submanifold
h−1(0) near ξ.

2) Exact Reduction Over Multiple Cycles: If rank
DθP (ξ, θ) < dimΣ, as noted in [22] it may be possible
to construct a deadbeat control law by applying inputs over
multiple cycles. Specifically, let P0 = P and for each 
 ∈ N

define P� : U� ×Θ� → Σ by

P� (x, (θ1, . . . , θ�)) = P (P�−1 (x, (θ1, . . . , θ�−1)) , θ�) (10)

for all (x, (θ1, . . . , θ�)) ∈ U� ×Θ� where U� ⊂ U is a neigh-
borhood of ξ sufficiently small to ensure (10) is well-defined.
Then if there exists k ∈ N such that

rank D(θ1,...,θk)Pk (ξ, (θ, . . . , θ)) = dimΣ (11)

the construction from the previous paragraph yields a smooth
k-step feedback law ψk : Vk → Θk such that the closed-loop
hybrid system reduces via Theorem 1 to the periodic orbit γ
after k cycles. We conclude this section by noting that [22]
contains an example that performs exact reduction after two
cycles, and for which reduction in fewer cycles is impossible.

3) Approximate Reduction: Since (11) is equivalent to con-
trollability [34, Chapter 8d.5] of the linear control system (9),
it is worthwhile to consider the linear control problem. Any sta-
bilizable subspace S [34, Chapter 8d.7] of (9) can be rendered
attracting in a finite number of steps k ∈ N with linear state
feedback δθi = Ψδxi where Ψ is a fixed matrix [45]. Applying
this linear feedback law to the nonlinear system (8) yields a
closed-loop Poincaré map PΨ such that the rangespace of the
k-th iterate of its linearization DxP

k
Ψ(ξ) is contained in S.

Therefore Theorem 2 (Approximate Reduction) yields an in-
variant hybrid subsystem, tangent to S on Σ, that attracts nearby
trajectories superexponentially. Thus, although feedback laws
for the nonlinear control system (8) constructed above can be
computed using the procedure described in [22] to achieve
exact reduction to the target subsystem, if approximate reduc-
tion suffices then one may simply apply the linear deadbeat
controller computed for (9).

4) Structural Stability of Deadbeat Control: Suppose the
preceding development is applied to a model that differs from

that used to construct the feedback law ψ ∈ C∞(V,Θ). We
study the structural stability [31, Section 1.7] of attracting
invariant sets arising in this class of systems by applying the
Theorems of Section III. If the models differ by a small smooth
deformation (as would occur if there was a small perturbation
in model parameters), one interpretation of this change is that
some ψ̃ ∈ Bε(ψ) ⊂ C∞(V,Θ) is applied to the model for
which ψ is deadbeat, where ε>0 bounds the error. For all ε>0
sufficiently small, ψ̃ yields a perturbed closed-loop Poincaré
map P̃ : V → Σ possessing a unique fixed point ξ̃ ∈ V , and ξ̃
is an exponentially stable fixed point of the perturbed system.

We conclude by noting that it is possible for the structure of
the hybrid dynamics to constrain the achievable perturbations.
For instance, if one domain of the hybrid system has lower
dimension than that in which the Poincaré map is constructed,
then zero is always a Floquet multiplier regardless of the
applied feedback; in this case Theorem 2 (Approximate Re-
duction) implies the existence of a proper submanifold of the
Poincaré section Σ to which trajectories contract superexpo-
nentially in the presence of any (sufficiently small) smooth
perturbation to the closed-loop dynamics.

D. Hybrid Floquet Coordinates

When a hybrid system reduces to a smooth dynamical system
near a periodic orbit via Theorem 1 (Exact Reduction), we can
generalize the Floquet normal form [46]–[49] using Theorem 3
(Smoothing). Broadly, this demonstrates how the Theorems of
Section III can be applied to generalize constructions from
classical dynamical systems theory to the hybrid setting. More
concretely, this provides a theoretical framework that justifies
application of the empirical approach developed in [48], [49] to
estimate low-dimensional invariant dynamics in data collected
from physical locomotors.

Consider a hybrid dynamical system H = (D,F,G,R) with
τ -periodic orbit γ that satisfies the hypotheses of Theorem 1.
Let M ⊂ D be the (r + 1)-dimensional invariant hybrid sub-
system yielded by the Theorem, and W ⊂ D a hybrid open set
containing γ that contracts to M in finite time. Let (M̃, F̃ )
denote the smooth dynamical system obtained by applying
Theorem 3. Under a genericity condition5 there exists a neigh-
borhood U ⊂ M̃ of γ and a smooth chart ϕ : U → R

r × S1

such that the coordinate representation of the vector field has
the form

(Dϕ ◦ F̃ ◦ ϕ−1)(z, θ) =

(
ż
θ̇

)
=

(
A(θ)z

2π
τ

)
(12)

where z ∈ R
r and θ ∈ S1. In these coordinates, each θ ∈ S1

determines an embedded submanifold Ñθ = R
r × {θ} ⊂ R

r ×
S1 that is mapped to itself after flowing forward in time by τ ;
for this reason, the submanifolds Ñθ are referred to as isochrons
[47]. Each x ∈ Ñθ may be assigned the phase θ ∈ S1; if γ
is stable, then as t → ∞ the trajectory initialized at x will
asymptotically converge to the trajectory initialized at (0, θ).

5Either the periodic orbit is exponentially stable or it is hyperbolic and
the associated Floquet multipliers do not satisfy any Diophantine equation
[31, Chapter 3.3].
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The isochrons may be pulled back to any precompact hybrid
open set V ⊂ W containing γ in the original hybrid system
as follows. The proof of Theorem 1 implies there exists a
finite time t < ∞ such that every execution initialized in V is
defined over the time interval [0, t] and reaches M before time
t; without loss of generality, we take this time to be a multiple
kτ of the period of γ for some k ∈ N. Let ψ : V → M̃ denote
the map that flows an initial condition x ∈ V forward by t

time units and then applies the quotient projection π : M → M̃

obtained from Theorem 3 to yield the point ψ(x) ∈ M̃ . Then
the constructions in the proof of Theorem 1 imply that ψ is
a smooth map in the sense defined in Section III-A, i.e., it is
continuous and ψ|V ∩Dj

is smooth for each j ∈ J . Now, for

any θ ∈ S1 the set Nθ = ψ−1(U) is mapped into Ñθ after kτ
units of time; we thus refer to Nθ ⊂ D as a hybrid isochron.
We conclude by noting that Nθ will generally not be a smooth
(hybrid) submanifold.

V. DISCUSSION

Generically for an exponentially stable periodic orbit in a
hybrid dynamical system, nearby trajectories contract super-
exponentially to a subsystem containing the orbit. Under a
non-degeneracy condition on the rank of any Poincaré map
associated with the orbit, this contraction occurs in finite time
regardless of the stability of the orbit. Hybrid transitions may
be removed from the resulting subsystem, yielding an equiva-
lent smooth dynamical system. Thus the dynamics near stable
hybrid periodic orbits are generally obtained by extending the
behavior of a smooth system in transverse coordinates that
decay superexponentially. Although the applications presented
in Section IV focused on terrestrial locomotion [1], we em-
phasize that the results in Section III do not depend on the
phenomenology of the physical system under investigation,
and are hence equally suited to study rhythmic hybrid control
systems appearing in robotic manipulation [2], biochemistry
[3], and electrical systems [4].

In addition to providing a canonical form for the dynam-
ics near hybrid periodic orbits, the results of this paper sug-
gest a mechanism by which a many-legged locomotor or a
multi-fingered manipulator may collapse a large number of
mechanical degrees-of-freedom to produce a low-dimensional
coordinated motion. This provides a link between disparate
lines of research: formal analysis of hybrid periodic orbits; de-
sign of robots for rhythmic locomotion and manipulation tasks;
and scientific probing of neuromechanical control architectures
in humans and animals. Our theoretical results show that hybrid
models of rhythmic phenomena generically reduce dimension-
ality, and our applications demonstrate that this reduction may
be deliberately designed into an engineered system. We further-
more speculate that evolution may have exploited this reduction
in developing its spectacularly dexterous agents.

APPENDIX I
SMOOTH DYNAMICAL SYSTEMS

We constructed hybrid systems using switching maps defined
on boundaries of smooth dynamical systems. The behavior

of such systems can be studied by alternately applying flows
and maps, thus in this section we collect results that provide
canonical forms for the behavior of flows and maps near
periodic orbits and fixed points, respectively. The first develops
a canonical form for the flow to a section in a continuous-time
system. The second provides a technique to smoothly attach
continuous-time systems along their boundaries. The third and
fourth establish a canonical form for submanifolds that are
invariant and approximately invariant (respectively) near fixed
points in discrete-time dynamical systems; the fifth provides an
estimate of the error in the invariance approximation.

A. Continuous-Time Dynamical Systems

Definition 4: A continuous-time dynamical system is a pair
(M,F ) where:

M is a smooth manifold with boundary ∂M ;
F is a smooth vector field on M , i.e., F ∈ T(M).

1) Time-to-Impact: When a trajectory passes transversely
through an embedded submanifold, the time required for nearby
trajectories to pass through the manifold depends smoothly
on the initial condition [30, Chapter 11.2]. This provides the
prototype used in the proofs of Theorems 1 and 2 for the
dynamics near the portion of a hybrid periodic orbit in one
domain of a hybrid system.

Lemma 2: Let (M,F ) be a smooth dynamical system,
φ : F → M the maximal flow associated with F , and G ⊂ M
a smooth codimension-1 embedded submanifold. If there exists
x ∈ M and t ∈ Fx such that φ(t, x) ∈ G and F (φ(t, x)) 
∈
Tφ(t,x)G, then there is a neighborhood U ⊂ M containing x
and a smooth map σ : U → R so that σ(x) = t and φ(σ(y),
y) ∈ G for all y ∈ U ;σ is called the time-to-impact map.

Remark 5: This lemma is applicable when G ⊂ ∂M .
2) Smoothing Flows: Two continuous-time dynamical sys-

tems can be smoothly attached to one another along their
boundaries to obtain a new continuous-time system [26,
Theorem 8.2.1]. Distinct hybrid domains were attached to one
another using this construction in Section III.

Lemma 3: Suppose (M1,F1),(M2,F2) are n-dimensional
continuous-time dynamical systems, there exists a diffeomor-
phism R : ∂M1 → ∂M2, F1 is outward-pointing along ∂M1,
and F2 is inward–pointing along ∂M2. Then the topological
quotient

M̃ =
M1

∐
M2

∂M1
R∼ ∂M2

can be endowed with the structure of a smooth manifold such
that for j ∈ {1, 2}:

1) the quotient projections πj : Mj → M̃ are smooth em-
beddings; and

2) there is a smooth vector field F̃ ∈ T(M̃) that restricts to
Dπj(Fj) on π(Mj) ⊂ M̃ .

Remark 6: The smooth structure constructed in Lemma 3 is
unique up to diffeomorphism [26, Theorem 2.1 in Chapter 8].
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B. Discrete-Time Dynamical Systems

Definition 5: A discrete-time dynamical system is a pair
(Σ, P ) where:
Σ is a smooth manifold without boundary;
P is a smooth endomorphism of Σ, i.e., P : Σ → Σ.
In studying hybrid dynamical systems, we encounter smooth

maps P : Σ → Σ that are noninvertible. Viewing iteration of P
as determining a discrete-time dynamical system, we wish to
study the behavior of these iterates near a fixed point ξ = P (ξ).
Note that if P has constant rank equal to k < n = dimΣ,
then its image P (Σ) ⊂ Σ is an embedded k-dimensional sub-
manifold near ξ by the Rank Theorem [27, Theorem 7.13].
With an eye toward model reduction, one might hope that the
composition (P ◦ P ) : Σ → P (Σ) is also constant-rank, but
this is not generally true.6

In this section we provide three results that introduce reg-
ularity into iterates of a noninvertible map P : Σ → Σ on an
n-dimensional manifold Σ near a fixed point P (ξ) = ξ. If the
rank of DP is strictly bounded above by m ∈ N and if Pm,
the m-th iterate of P , has constant rank equal to r ∈ N near the
fixed point ξ, then P reduces to a diffeomorphism over an r-
dimensional invariant submanifold after m iterations; this result
is given in Section A-B1. Even if DPm is not constant rank, as
long as ξ is exponentially stable then P can be approximated
by a diffeomorphism on a submanifold whose dimension equals
rankDPm(ξ); this is the subject of Section A-B2. A bound on
the error in this approximation is provided in Section A-B3.

1) Exact Reduction: If the rank of P : Σ → Σ is strictly
bounded above by m ∈ N and the derivative of the m-th iterate
of P has constant rank near a fixed point, then the range
of P is locally an embedded submanifold, and P restricts
to a diffeomorphism over that submanifold. This originally
appeared without proof as [33, Lemma 3].

Lemma 4: Let (Σ, P ) be an n-dimensional discrete-time
dynamical system with P (ξ) = ξ for some ξ ∈ Σ. Suppose the
rank of P is strictly bounded above by m ∈ N and there exists
a neighborhood W ⊂ Σ of ξ such that rank DPm(x) = r for
all x ∈ W . Then there is a neighborhood V ⊂ Σ containing ξ
such that Pm(V ) is an r-dimensional embedded submanifold
near ξ and there is a neighborhood U ⊂ Pm(V ) containing ξ
that P maps diffeomorphically onto P (U) ⊂ Pm(V ).

In the proof of Lemma 4, we make use of a fact from linear
algebra obtained by passing to the Jordan canonical form.

Proposition 2: If A ∈ R
n×n and rank A < m, then

rank(A2m) = rank(Am).
Proof. (of Lemma 4): By the Rank Theorem

[27, Theorem 7.13], there is a neighborhood V ⊂ Σ of
ξ for which S = Pm(V ) is an r-dimensional embedded
submanifold and by Proposition 2 we have

rank(DPm|S)(ξ) = rank D(Pm ◦ Pm)(ξ)

= rank DPm(ξ).

Therefore DPm|S : TξS → TξS is a bijection, so by the In-
verse Function Theorem [27, Theorem 7.10], there is a neigh-

6Consider the map P : R2 → R
2 defined by P (x, y) = (x2, x).

borhood W ⊂ S containing ξ so that Pm(W ) ⊂ S and Pm|W :
W → Pm(W ) is a diffeomorphism.

We now show that W is invariant under P in a neighborhood
of ξ. By continuity of P , there is a neighborhood L ⊂ V
containing ξ for which P (L) ⊂ V and Pm(L) ⊂ W . The set
U = Pm(L) is a neighborhood of ξ in S. Further, we have

P (U) = P ◦ Pm(L) = Pm ◦ P (L) ⊂ S.

The restrictionPm|U :U→Pm(U) is a diffeomorphism sinceU
⊂W , henceP |U is a diffeomorphism onto its imageP (U)⊂S. �

2) Approximate Reduction: Now suppose that iterates of P
are not constant rank but ξ = P (ξ) is exponentially stable,
meaning that the spectral radius ρ(DP (ξ)) = max{|λ| : λ ∈
specDP (ξ)} satisfies ρ(DP (ξ)) < 1. We show that P may be
approximated by a diffeomorphism defined on a submanifold
whose dimension equals the number of non-zero eigenvalues
of DP (ξ). The technical result we desire was originally es-
tablished by Hartman [50].7 We apply Hartman’s Theorem to
construct a C1 change—of—coordinates that exactly linearizes
all eigendirections corresponding to non—zero eigenvalues of
DP (ξ).

Lemma 5: Let (Σ, P ) be an n-dimensional discrete-time
dynamical system. Suppose ξ = P (ξ) is an exponentially stable
fixed point and let r be the number of non-zero eigenvalues
of DP (ξ). Then there is a neighborhood U ⊂ Σ of ξ and a
C1 diffeomorphism ϕ : U → R

n such that ϕ(ξ) = 0 and the
coordinate representation P̃ = ϕ ◦ P ◦ ϕ−1 of P has the form

P̃ (z, ζ) = (Az,N(z, ζ))

where z ∈ R
r, ζ ∈ R

n−r, A ∈ R
r×r is invertible, N : ϕ(U) →

R
n−r is C1, N(0, 0) = 0, and DζN(0, 0) is nilpotent.
3) Superstability: Finally, we recall that if all eigenvalues

of the linearization of a map at a fixed point are zero—a so-
called “superstable” fixed point [28]—then the map contracts
superexponentially; this is a straightforward consequence of
Ostrowski’s Theorem [53, 8.1.7].

Lemma 6: Let P : Rn → R
n be a C1 map with P (0) = 0,

spec DP (0) = {0}. Then for every ε > 0 and norm ‖ · ‖ :
R

n → R there exists δ, C > 0 such that

∀x ∈ Bδ(0), k ∈ N :
∥∥P k(x)

∥∥ ≤ Cεk‖x‖.
Remark 7: Let (Σ, P ) be an n-dimensional discrete-time

dynamical system that satisfies the hypotheses of Lemma 5 near
ξ = P (ξ). Then P has a coordinate representation P̃ (z, ζ) =
(Az,N(z, ζ)) in a neighborhood of ξ where A is an invert-
ible matrix, N(0, 0) = 0, and spec DζN(0, 0) = {0}. There-
fore given ε > 0 we can apply Lemma 6 to the nonlinearity
P̃ (z, ζ)− (Az, 0) = (0, N(z, ζ)) to find δ, C > 0 such that for
all (z, ζ) ∈ Bδ(0) and k ∈ N∥∥∥P̃ k(z, ζ)− (Akz, 0)

∥∥∥ ≤ Cεk ‖(z, ζ)‖ .

We conclude that P is arbitrarily well-approximated near ξ by
a diffeomorphism on a submanifold whose dimension equals
rank DPn(ξ).

7The statement in [50] only considered invertible contractions. However, as
noted in [51], the proof in [50] of the result we require does not make use
of invertibility and the conclusion is still valid if zero is an eigenvalue of the
linearization. For details we refer to [52].
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